औसत और घातीय चौरसाई मॉडल चलाना। मतलब मॉडल, यादृच्छिक चलने मॉडल, और रैखिक प्रवृत्ति मॉडल, गैर-मौसमी पैटर्न और प्रवृत्तियों से आगे बढ़ने में पहला कदम चलती औसत या चौरसाई मॉडल का उपयोग करके एक्सट्रपलेशन किया जा सकता है औसत और चौरसाई मॉडल के पीछे मूल धारणा है कि समय श्रृंखला स्थानीय स्तर पर स्थिरता से भिन्न होती है इसलिए, हम चलने वाले स्थानीय औसत को अनुमान के वर्तमान मूल्य का अनुमान लगाते हैं और फिर इसका इस्तेमाल निकट भविष्य के पूर्वानुमान के रूप में करते हैं, इसे औसत मॉडल के बीच समझौता माना जा सकता है और यादृच्छिक-चलने के बिना-बहाव-मॉडल समान रणनीति का इस्तेमाल स्थानीय प्रवृत्ति का अनुमान और एक्सट्रपॉल करने के लिए किया जा सकता है एक चलती औसत को अक्सर मूल श्रृंखला का एक चिकना संस्करण कहा जाता है क्योंकि अल्पकालिक औसतन रूप से बाधाओं को चौरसाई करने का प्रभाव होता है मूल श्रृंखला में चलती औसत की चौड़ाई को चौरसाई की डिग्री को समायोजित करके, हम उम्मीद कर सकते हैं कि मध्य के प्रदर्शन के बीच किसी भी प्रकार का इष्टतम संतुलन और यादृच्छिक चलने वाले मॉडल सरलतम औसत मॉडल है। समान समान-भारित मूविंग औसत। समय पर वाई के मूल्य के लिए पूर्वानुमान, जो समय पर बना है, टी सबसे हाल के एम अवलोकन के सरल औसत के बराबर है। यहां और कहीं और मैं Y-hat का प्रतीक का उपयोग समय के श्रृंखला के पूर्वानुमान के लिए खड़े होंगे, जो किसी दिए गए मॉडल से सबसे पहले की पूर्व तारीख को बनाया गया था। यह औसत अवधि टी-मी 1 2 पर केंद्रित है, जिसका अर्थ है कि अनुमान स्थानीय मतलब के बारे में मी 1 2 अवधि से स्थानीय मतलब के सही मूल्य के पीछे की ओर झेलना होगा, इसलिए हम कहते हैं कि सरल चलती औसत में डेटा की औसत आयु एम 1 2 उस अवधि के सापेक्ष है जिसके लिए पूर्वानुमान की गणना की जाती है यह उस समय की मात्रा है जिसके द्वारा पूर्वानुमान डेटा में बिंदुओं को मोड़ के पीछे पीछे की ओर झेलता है उदाहरण के लिए, यदि आप पिछले 5 मानों का औसत रहे हैं, तो मोड़ करने के लिए प्रतिक्रियाओं के उत्तर में अनुमान के बारे में 3 अवधि देर हो जाएगी ध्यान दें कि यदि मी 1, सरल चलती औसत एसएमए मॉडल विकास के बिना यादृच्छिक चलने के मॉडल के बराबर है यदि अनुमानित अवधि की तुलना में मी बहुत बड़ी है, तो एसएमए मॉडल औसत मॉडल के बराबर है जैसा कि एक पूर्वानुमान मॉडल के किसी भी पैरामीटर के अनुसार, यह प्रथागत है के मूल्य को समायोजित करने के लिए डेटा के लिए सबसे अच्छा फिट प्राप्त करने के लिए n आदेश, अर्थात् औसत पर छोटी सी पूर्वानुमान त्रुटियां। यहां एक ऐसी श्रृंखला का उदाहरण है जो धीरे-धीरे अलग-अलग साधनों के बीच यादृच्छिक उतार-चढ़ाव प्रदर्शित करता है, पहले इसे एक यादृच्छिक चलने से फिट करने का प्रयास करें मॉडल, जो कि 1 अवधि के साधारण चलती औसत के बराबर है। यादृच्छिक चलने वाला मॉडल श्रृंखला में परिवर्तन के लिए बहुत जल्दी प्रतिक्रिया करता है, लेकिन ऐसा करने से डेटा में बहुत अधिक शोर लगता है, यादृच्छिक उतार-चढ़ाव के साथ-साथ संकेत स्थानीय इसका मतलब यह है कि यदि हम इसके बजाय 5 शब्दों की एक सरल चलती औसत की कोशिश करते हैं, तो हमें एक चिकनी दिखने वाले पूर्वानुमान प्राप्त होते हैं। 5-अवधि की सरल चलती औसत उपज इस मामले में यादृच्छिक चलने की मॉडल की तुलना में काफी छोटी त्रुटियां होती है। पूर्वानुमान 3 5 1 2 है, इसलिए यह लगभग तीन अवधियों तक मोड़ के पीछे की ओर झुकता है उदाहरण के लिए, 21 साल की अवधि में एक मंदी हुई है, लेकिन कई सालों बाद पूर्वानुमान नहीं पड़ता। एसएमए आधुनिक से भविष्य के पूर्वानुमान एल एक क्षैतिज सीधी रेखा है, जैसे कि यादृच्छिक चलने के मॉडल में, एसएमए मॉडल मानता है कि आंकड़ों में कोई प्रवृत्ति नहीं है, हालांकि, यादृच्छिक चलने वाले मॉडल से होने वाले अनुमान केवल पिछले मान के मान के बराबर हैं, ये अनुमान एसएमए मॉडल हाल के मूल्यों के एक भारित औसत के बराबर हैं। स्थिर गति से औसत के दीर्घकालिक पूर्वानुमान के लिए सांख्यिकीग्राफ द्वारा गणना की जाने वाली आत्मविश्वास सीमा भविष्यवाणी की क्षितिज बढ़ने के रूप में व्यापक नहीं होती है यह स्पष्ट रूप से सही नहीं है दुर्भाग्य से, कोई अंतर्निहित नहीं है सांख्यिकीय सिद्धांत जो हमें बताता है कि इस मॉडल के लिए आत्मविश्वास के अंतराल को कैसे चौड़ा करना चाहिए, हालांकि, लंबे समय-क्षिति पूर्वानुमान के लिए आत्मविश्वास सीमा के अनुभवजनित अनुमानों की गणना करना बहुत मुश्किल नहीं है उदाहरण के लिए, आप एक स्प्रैडशीट सेट कर सकते हैं जिसमें SMA मॉडल ऐतिहासिक डेटा नमूने के भीतर 2 चरणों के आगे, 3 कदम आगे, आदि का पूर्वानुमान करने के लिए उपयोग किया जाएगा, फिर आप प्रत्येक पूर्वानुमान में त्रुटियों के नमूना मानक विचलन की गणना कर सकते हैं। और फिर, उचित मानक विचलन के गुणकों को जोड़कर और घटाकर लंबे समय तक पूर्वानुमान के लिए आत्मविश्वास अंतराल का निर्माण करते हैं। यदि हम 9-अवधि की सरल चलती औसत की कोशिश करते हैं, तो हमें चिकना पूर्वानुमान और अधिक प्रभाव पड़ता है। औसत आयु अब 5 अवधियों 9 1 2 यदि हम 1 9-अवधि की चलती औसत लेते हैं, तो औसतन उम्र बढ़कर 10 हो जाती है। नॉटिस, वास्तव में, पूर्वानुमान अब लगभग 10 अवधियों तक अंक बंटने के पीछे चल रहे हैं। किस श्रृंखला में चौरसाई इस श्रृंखला के लिए सर्वश्रेष्ठ है यहां एक ऐसी तालिका है जो उनकी त्रुटि आंकड़े की तुलना करती है, जिसमें 3-टर्म औसत भी शामिल है। मॉडेल सी, 5-अवधि की चलती औसत, 3-अवधि और 9-अवधि की औसत पर छोटे मार्जिन द्वारा आरएमएसई के न्यूनतम मूल्य की पैदावार करता है, और उनके अन्य आँकड़े लगभग समान हैं, बहुत ही इसी तरह के त्रुटि आंकड़ों वाले मॉडल के बीच, हम यह चुन सकते हैं कि हम भविष्य में कुछ अधिक प्रतिक्रियाशीलता या थोड़ी अधिक चिकनाई पसंद करेंगे या नहीं। पृष्ठ के शीर्ष पर लौटें। ब्राउन सरल एक्स्पेंन्नेली चतुराई का तेजी से भारित औसत चलती है। ऊपर वर्णित सरल चलती औसत मॉडल में अवांछनीय संपत्ति है जो पिछली कश्मीर टिप्पणियों को समान रूप से मानती है और सभी पूर्ववर्ती टिप्पणियों को पूरी तरह से अनदेखी करती है, तीव्रता से, पिछले डेटा को अधिक धीरे-धीरे फैशन में छूट दी जानी चाहिए - उदाहरण के लिए, सबसे हाल का अवलोकन होना चाहिए 2 सबसे हालिया से थोड़ा अधिक वजन प्राप्त करें, और 2 सबसे हालिया को हाल ही के तीसरे से थोड़ा अधिक वजन लेना चाहिए, और इसी पर सरल घातीय चिकनाई एसईएस मॉडल इस को पूरा करता है। एक चिकनाई निरंतर एक संख्या 0 और 1 के बीच दर्शाती है मॉडल को लिखने का एक तरीका एक श्रृंखला एल को परिभाषित करना है जो वर्तमान स्तर का प्रतिनिधित्व करता है, यानी स्थानीय औसत मूल्य का मानना है जो आंकड़ों से वर्तमान तक का अनुमान है। समय के एल के मूल्य को इस तरह से अपने पिछले मूल्य से पुनरावर्ती रूप से गिना जाता है। इस प्रकार, वर्तमान मस्तिष्क का मूल्य पिछले चिकना मूल्य और वर्तमान अवलोकन के बीच एक प्रक्षेप होता है, जहां सबसे अधिक के लिए अंतःसर्वरित मूल्य की निकटता को नियंत्रित करता है प्रतिशत अवलोकन अगली अवधि के लिए पूर्वानुमान केवल मौजूदा मसौदा मूल्य है। ठीक है, हम अगले पूर्वानुमान और पिछले टिप्पणियों के संदर्भ में सीधे अगले पूर्वानुमान व्यक्त कर सकते हैं, निम्नलिखित समकक्ष संस्करणों में से किसी में पहले संस्करण में, पूर्वानुमान एक प्रक्षेप है पिछले पूर्वानुमान और पिछले प्रेक्षण के बीच। दूसरे संस्करण में, अगले पूर्वानुमान को पिछले त्रुटि की दिशा में पिछले पूर्वानुमान को एक आंशिक राशि से समायोजित करके प्राप्त किया जाता है। समय पर दिया गया त्रुटि, तीसरे संस्करण में, पूर्वानुमान एक है डिस्काउंट कारक के साथ तेजी से भारित अर्थात् रियायती चलती औसत 1. भविष्यवाणी के फार्मूले के प्रक्षेपण संस्करण का प्रयोग सरलतम है यदि आप एक स्प्रेडशीट पर मॉडल को लागू कर रहे हैं, यह एक एकल कक्ष में फिट है और इसमें सेल के संदर्भ में पिछले पूर्वानुमान, पिछले अवलोकन और सेल जहां मूल्य का संचय किया जाता है। नोट करें कि यदि 1, एसईएस मॉडल एक यादृच्छिक चलने वाले मॉडल के समान है हटे की वृद्धि यदि 0, एसईएस मॉडल औसत मॉडल के समतुल्य है, यह मानते हुए कि पहला सौम्य मूल्य मतलब पेज के शीर्ष पर लौटने के बराबर सेट है। सरल-घातांक-चौरसाई पूर्वानुमान में डेटा की औसत आयु 1 रिश्तेदार है इस अवधि के लिए पूर्वानुमान की गणना की जाती है यह स्पष्ट नहीं माना जाता है, लेकिन यह एक अनंत श्रृंखला का मूल्यांकन करके आसानी से दिखाया जा सकता है इसलिए, सरल चलती औसत पूर्वानुमान लगभग 1 अवधियों तक अंक बदलने से पीछे की ओर जाता है उदाहरण के लिए, जब 0 5 अंतराल 2 अवधि है जब 0 2 में 5 अवधियां होती हैं, जब 0 1 अंतराल 10 अवधियां होती है, और इसी तरह। किसी दिए गए औसत आयु के लिए यानी अंतराल की मात्रा, सरल घातीय चिकनाई एसईएस पूर्वानुमान सरल चलती से कुछ बेहतर है औसत एसएमए पूर्वानुमान क्योंकि यह हाल के अवलोकन पर अपेक्षाकृत अधिक वजन रखता है - यह हाल के दिनों में होने वाले परिवर्तनों के लिए थोड़ा अधिक उत्तरदायी है उदाहरण के लिए, 9 शब्दों के साथ एक एसएमए मॉडल और 0 2 के साथ एक एसईएस मॉडल दोनों का औसत आयु है दा के लिए 5 का उनके पूर्वानुमान में टा, लेकिन एसईएस मॉडल एसएमए मॉडल से पिछले 3 मानों पर और अधिक वजन डालता है और साथ ही यह चार्ट पूरी तरह से 9 बार पुरानी है, जैसा कि इस चार्ट में दिखाया गया है। इसके अलावा एक अन्य महत्वपूर्ण लाभ एसएमए मॉडल पर एसईएस मॉडल यह है कि एसईएस मॉडल एक चिकनाई पैरामीटर का उपयोग करता है जो निरंतर चर होता है, इसलिए यह आसानी से एक सॉल्वर एल्गोरिथ्म का उपयोग करके अनुकूलित किया जा सकता है जो कि चुकता त्रुटि को कम करता है इस श्रृंखला के एसईएस मॉडल में इष्टतम मूल्य निकलता है जैसा कि यहां दिखाया गया है, 0 0 9 61 होना। इस पूर्वानुमान में आंकड़ों की औसत आयु 1 0 2961 3 4 अवधि है, जो कि 6-अवधि की सरल चलती औसत के समान है। एसईएस मॉडल से दीर्घावधि पूर्वानुमान एसएमए मॉडल के रूप में एक क्षैतिज सीधी रेखा और विकास के बिना यादृच्छिक चलने वाला मॉडल हालांकि, ध्यान दें कि Statgraphics द्वारा गणना किए गए आत्मविश्वास अंतराल अब एक उचित दिखने वाले फैशन में अलग हो जाते हैं, और यह कि वे रैंड के लिए आत्मविश्वास अंतराल से काफी संकरा हैं ओम वॉली मॉडल एसईएस मॉडल मानता है कि श्रृंखला यादृच्छिक चलने की मॉडल की तुलना में कुछ अधिक पूर्वानुमानित है। एक एसईएस मॉडल वास्तव में एक एआरआईएए मॉडल का विशेष मामला है, इसलिए एआरआईएए मॉडल के सांख्यिकीय सिद्धांत के लिए आत्मविश्वास अंतराल की गणना के लिए एक ठोस आधार प्रदान करता है। एसईएस मॉडल विशेष रूप से, एक एसईएस मॉडल एक गैर-मौसमी अंतर, एक एमए 1 शब्द के साथ एक एआरआईएए मॉडल है, और कोई निरंतर कोई अन्य शब्द नहीं है जिसे एआरआईएएमए 0,1,1 मॉडल के रूप में जाना जाता है, निरंतर बिना एआरएमए मॉडल में एमए 1 गुणांक एसईएस मॉडल में मात्रा 1- उदाहरण के लिए, यदि आप यहां विश्लेषण किए गए श्रृंखला के लिए निरंतर बिना एआरआईएएमए 0,1,1 मॉडल को फिट करते हैं, तो अनुमानित एमए 1 गुणांक 0 7029 हो जाता है, जो लगभग एक शून्य से 0 9 61 है यह एक गैर-शून्य निरंतर रेखीय प्रवृत्ति को एसईएस मॉडल में शामिल करने के लिए संभव है, ऐसा करने के लिए केवल एक नॉन-सीजनल अंतर के साथ एक एआरआईएएमए मॉडल को निर्दिष्ट करें और एक एमए 1 टर्म के साथ एक निरंतर, अर्थात् एआरआईएएमए 0,1,1 मॉडल निरंतर के साथ दीर्घकालिक पूर्वानुमान होगा तो एक प्रवृत्ति है जो औसत अनुमान के हिसाब से औसत प्रवृत्ति के बराबर है आप इसे मौसमी समायोजन के साथ संयोजन में नहीं कर सकते, क्योंकि मॉड्यूल प्रकार को एआरआईए में सेट किया जाता है, जब मौसमी समायोजन विकल्प अक्षम हो जाते हैं, फिर भी, आप लगातार लंबे समय तक जोड़ सकते हैं - फ़ीडिंग की प्रक्रिया में मुद्रास्फ़ीति समायोजन विकल्प का उपयोग करके या बिना मौसमी समायोजन के साथ एक सरल घातीय चिकनाई मॉडल के लिए मानक घातीय प्रवृत्ति उचित अवधि में औसत मुद्रास्फीति प्रतिशत वृद्धि दर के अनुमान के अनुसार रेखीय प्रवृत्ति मॉडल में ढलान गुणांक के रूप में अनुमान लगाया जा सकता है प्राकृतिक लॉगरिथम परिवर्तन के साथ संयोजन, या यह अन्य, स्वतंत्र लंबी अवधि के विकास की संभावनाओं से संबंधित जानकारी पर आधारित हो सकता है पृष्ठ के शीर्ष पर लौटें। ब्रायन रैखिक यानी दोहरे घातीय चिकनाई। एसएमए मॉडल और एसईएस मॉडल मानते हैं कि इसमें कोई प्रवृत्ति नहीं है डेटा में किसी भी तरह का डेटा आमतौर पर ठीक है या कम से कम नहीं-बहुत-बुरा 1-कदम-आगे पूर्वानुमान के लिए जब डेटा अपेक्षाकृत नहीं है sy, और उन्हें एक निरंतर रेखीय प्रवृत्ति को शामिल करने के लिए संशोधित किया जा सकता है, जैसा कि ऊपर दिखाया गया है, अल्प अवधि के रुझान के बारे में यदि कोई श्रृंखला वृद्धि की एक अलग दर या एक चक्रीय पैटर्न जो शोर के खिलाफ स्पष्ट रूप से खड़ा है, और यदि एक से अधिक अवधि के पूर्वानुमान के बाद, एक स्थानीय प्रवृत्ति का अनुमान भी एक मुद्दा हो सकता है एक सरल घातीय चिकनाई मॉडल को एक रेखीय घातीय चिकनाई लेस मॉडल प्राप्त करने के लिए सामान्यीकृत किया जा सकता है जो दोनों स्तर और प्रवृत्ति के स्थानीय अनुमानों की गणना करता है। सरलतम समय-भिन्न प्रवृत्ति मॉडल ब्राउन की रेखीय घातीय चौरसाई मॉडल है, जो दो अलग-अलग चिकने श्रृंखला का उपयोग करता है जो समय के विभिन्न बिंदुओं पर केन्द्रित होते हैं पूर्वानुमान का सूत्र दो केंद्रों के माध्यम से एक रेखा के एक्सट्रपलेशन पर आधारित होता है इस मॉडल के एक और अधिक परिष्कृत संस्करण, होल्ट एस ब्राउन की रैखिक घातीय चौरसाई मॉडल के बीजीय रूप नीचे दिए गए हैं, जैसे कि सरल घातीय चिकनाई मॉडल की, कई अलग-अलग में व्यक्त किया जा सकता है लेकिन ई क्वॉलिटी फॉर्म इस मॉडल का मानक रूप आमतौर पर निम्नलिखित रूप में व्यक्त किया जाता है: चलो एस श्रृंखला को साधारण घातांक को चौरसाई करने के द्वारा प्राप्त एकल-सीधा श्रृंखला को दर्शाती है, जो कि अवधि एस पर एस का मूल्य दिया जाता है। स्मरण करो कि, सरल घातीय चौरसाई के तहत, यह अवधि के दौरान वाई के लिए पूर्वानुमान होगा 1 फिर, एस द्विगुणित-सरल श्रृंखला को दर्शाती है जो श्रृंखला के लिए समान एक्सपेंनेली चौरसाई को लागू करने से प्राप्त होता है। अंत में, किसी भी वाई के लिए पूर्वानुमान कश्मीर 1 द्वारा दिया जाता है। यह पैदावार ई 1 0 या तो थोड़ी धोखा देती है, और पहले पूर्वानुमान को वास्तविक पहले अवलोकन के बराबर और दो 2 वाई 2 वाई 1 के बाद दें, इसके बाद से ऊपर के समीकरण का उपयोग करके भविष्यवाणी की जा रही है यह वही मूल्यों को पैदा करता है एस और एस पर आधारित सूत्र के रूप में यदि एस 1 एस 1 वाई 1 का उपयोग करना शुरू किया गया था तो मॉडल का यह संस्करण अगले पृष्ठ पर उपयोग किया जाता है जो कि मौसमी समायोजन के साथ घातीय चौरसाई का संयोजन दिखाता है। हॉल की रैखिक घातीय चिकनाई। ब्राउन एस लेस मॉडल हाल के आंकड़ों को चौरसाई करके स्तर और प्रवृत्ति के स्थानीय अनुमानों की गणना करता है, लेकिन तथ्य यह है कि यह एक चिकनाई पैरामीटर के साथ करता है, डेटा पैटर्न पर एक बाधा रखता है जो इसे स्तर में फिट करने में सक्षम है और प्रवृत्ति को अलग-अलग करने की अनुमति नहीं है पर स्वतंत्र दरों होल्ट एसईईएस मॉडल दो चिकनाई स्थिरांक, स्तर के लिए एक और प्रवृत्ति के लिए एक के साथ इस मुद्दे को संबोधित करता है, ब्राउन के मॉडल के रूप में किसी भी समय टी के अनुसार स्थानीय स्तर का एल टी अनुमान है और अनुमान टी स्थानीय प्रवृत्तियों में से इन्हें समय-समय पर वाई के मूल्य से मनाया जाता है और स्तर के पिछले अनुमान और दो समीकरणों के अनुसार अनुमान लगाया जाता है जो उन्हें अलग-अलग घातीय टुकड़ों को अलग से लागू करते हैं। यदि समय पर अनुमानित स्तर और प्रवृत्ति टी -1 क्रमशः एल टी 1 और टी टी -1, तो वाई टी के लिए पूर्वानुमान जो टी -1 पर बना होता है एल टी -1 टी टी -1 के बराबर होता है, जब वास्तविक मूल्य मनाया जाता है, तो अद्यतन अनुमान स्तर को वाई टी और उसके भविष्यवाणी, एल टी -1 टी टी -1 के बीच में अंतर करके और 1 के भार का उपयोग करके फिर से गणना की जाती है। अनुमानित स्तर में परिवर्तन, अर्थात् एल टी एल टी 1 को एक शोर माप के रूप में व्याख्या किया जा सकता है समय पर रुझान प्रवृत्ति के अद्यतन अनुमान को फिर से एल के बीच interpolating द्वारा recursively गणना है टी एल टी 1 और प्रवृत्ति का पिछला अनुमान, टी टी -1 का वजन और 1 का उपयोग करना। प्रवृत्ति-चौरसाई स्थिरता की व्याख्या स्तर-चौरसाई के समान मॉडल के समान है, जो मानते हैं कि प्रवृत्ति में परिवर्तन केवल समय के साथ ही बहुत धीरे-धीरे, जबकि बड़े मॉडल के साथ यह मानता है कि यह और तेज़ी से बदल रहा है एक मॉडल का मानना है कि दूर के भविष्य में बहुत अनिश्चितता है, क्योंकि एक से अधिक अवधि की भविष्यवाणी करते समय प्रवृत्ति अनुमान में त्रुटियां काफी महत्वपूर्ण हो जाती हैं। पृष्ठ का। चौरसाई स्थिरांक और 1-कदम-आगे पूर्वानुमानों की औसत स्क्वायर त्रुटि को कम करके सामान्य तरीके से अनुमान लगाया जा सकता है जब यह स्टैटाग्राफिक्स में किया जाता है, तो इसका अनुमान लगाया जाता है कि 0 3048 और 0 008 बहुत कम मूल्य इसका मतलब यह है कि मॉडल में एक अवधि से लेकर दूसरे तक की प्रवृत्ति में बहुत कम बदलाव होता है, इसलिए मूल रूप से यह मॉडल लंबी अवधि के रुझान का अनुमान लगाने का प्रयास कर रहा है, जो अनुमानित आंकड़ों की औसत आयु के विचार के साथ सादृश्य है। वह श्रृंखला का स्थानीय स्तर, स्थानीय प्रवृत्ति का आकलन करने के लिए उपयोग की जाने वाली डेटा की औसत आयु 1 के आनुपातिक है, हालांकि इसके ठीक उसी के बराबर नहीं है इस मामले में यह 1 0 006 125 हो सकता है यह बहुत सटीक संख्या है क्योंकि अनुमान के शुद्धता के रूप में वास्तव में 3 दशमलव स्थान वास्तव में नहीं हैं, लेकिन यह 100 के नमूने के आकार के समान परिमाण के समान सामान्य क्रम का है, इसलिए यह मॉडल प्रवृत्ति का अनुमान लगाने में काफी इतिहास का अनुमान लगा रहा है। नीचे दिखाया गया है कि एलईएस मॉडल एसईएस प्रवृत्ति मॉडल में अनुमानित निरंतर प्रवृत्ति की तुलना में श्रृंखला के अंत में एक थोड़ा बड़ा स्थानीय प्रवृत्ति का अनुमान भी करता है, अनुमानित मूल्य एसईएस मॉडल के साथ या प्रवृत्ति के बिना फिटिंग द्वारा प्राप्त होने वाले लगभग समान है , तो यह लगभग एक ही मॉडल है.अब, ये एक मॉडल के लिए उचित पूर्वानुमान की तरह दिखते हैं जो कि स्थानीय प्रवृत्ति का आकलन करने वाला है यदि आप इस प्लॉट को नजरअंदाज करते हैं, ऐसा लगता है जैसे स्थानीय प्रवृत्ति निम्न के अंत में बदल गई है श्रृंखला क्यू पर हुआ है इस मॉडल के मापदंडों का अनुमान लगाया गया है कि 1-कदम-आगे पूर्वानुमान की चुकता त्रुटि को कम करके, लंबी अवधि के पूर्वानुमान नहीं, इस मामले में प्रवृत्ति बहुत अधिक अंतर नहीं करती है यदि आप सभी को देख रहे हैं 1 - छोटे-आगे की त्रुटियां, आप 10 या 20 की अवधि के ऊपर रुझानों की बड़ी तस्वीर नहीं देख रहे हैं ताकि डेटा के आंखों के एक्सट्रपलेशन के साथ इस मॉडल को और अधिक प्राप्त करने के लिए, हम मैन्युअल रूप से रुझान-चिकनाई स्थिरता समायोजित कर सकते हैं ताकि यह उदाहरण के लिए, यदि हम 0 1 सेट करना चुनते हैं, तो स्थानीय प्रवृत्ति का आकलन करने में उपयोग की जाने वाली डेटा की औसत आयु 10 अवधि है, जिसका मतलब है कि हम उस पिछले 20 अवधि या उससे अधिक की प्रवृत्ति को औसत कर रहे हैं यहां बताया गया है कि अगर भविष्य की साजिश लगती है तो हम 0 1 को रखते हुए 0 1 सेट करते हैं, लेकिन यह इस श्रृंखला के लिए सहज रूप से उचित लगता है, हालांकि भविष्य में इस प्रवृत्ति को 10 से अधिक अवधि के एक्सट्रपलेशन के लिए संभवतः खतरनाक है। त्रुटि आंकड़ों के बारे में यहां बताया गया है एक मॉडल तुलना एफ या उपरोक्त दो मॉडल के साथ ही तीन एसईएस मॉडल एसईएस मॉडल का इष्टतम मूल्य लगभग 3 है, लेकिन इसी तरह के परिणाम थोड़ा अधिक या कम प्रतिक्रिया के साथ क्रमशः 0 5 और 0 से प्राप्त होते हैं। एक होल्ट रेखीय विस्तार चौरसाई अल्फा 0 3048 और बीटा 0 008 के साथ। बी होल्ट की रैखिक एक्सपी चक्की अल्फा 0 3 और बीटा 0 के साथ। सी के साथ सरल घातीय चौरसाई अल्फा 0 के साथ 5. डी सरल घातीय चिकनाई 0 3. ई अल्फा के साथ आसान घातीय चिकनाई 0 2 । उनका आंकड़ा लगभग समान है, इसलिए हम वास्तव में 1-कदम-आगे पूर्वानुमान नमूने के आधार पर पूर्वानुमान के आधार पर विकल्प नहीं बना सकते हैं, हमें अन्य विचारों पर पीछे पड़ना होगा यदि हम दृढ़ता से मानते हैं कि यह मौजूदा आधार पर समझ में आता है पिछले 20 सालों में जो कुछ हुआ है, उसके बारे में रुझान का अनुमान है, हम 0 3 और 0 1 के साथ एलईएस मॉडल के लिए एक केस बना सकते हैं यदि हम अज्ञात होना चाहते हैं कि क्या स्थानीय प्रवृत्ति है, तो एसईएस मॉडल में से एक समझाने के लिए आसान होगा और अधिक मिडल भी देंगे अगले 5 या 10 अवधि के लिए ई-ऑफ-द-रोड पूर्वानुमान पृष्ठ के शीर्ष पर लौटें। प्रवृत्ति-एक्सट्रपलेशन का किस प्रकार का सबसे अच्छा क्षैतिज या रैखिक अनुभवजन्य साक्ष्य बताता है कि यदि मुद्रास्फीति के लिए यदि आवश्यक हो तो डेटा पहले से समायोजित हो गया है, तो यह भविष्य के रुझानों में बहुत दूर अल्पकालिक रैखिक प्रवृत्तियों को एक्सट्रपोल करने के लिए अविवेकपूर्ण हो सकता है, जो कि आज के दिनों में स्पष्ट हो सकता है कि उत्पाद अप्रचलन, बढ़ती प्रतिस्पर्धा और उद्योग में चक्रीय गिरावट या उत्थान जैसे विभिन्न कारणों से भविष्य में सुस्त हो सकता है इस कारण से, सरल घातीय चूरा लगाना अक्सर अपेक्षाकृत अपेक्षाकृत बेहतर प्रदर्शन करती है, अन्यथा अपेक्षा की जा सकती है, इसके भोलेदार क्षैतिज प्रवृत्ति एक्सट्रपलेशन के बावजूद रैखिक घातीय चिकनाई मॉडल के ढेलेदार प्रवृत्ति संशोधनों को भी अक्सर प्रवृत्ति में प्रवृत्त प्रवृत्तियों में रूढ़िवाद की एक नोट पेश करने के लिए इस्तेमाल किया जाता है लेस मॉडल को एक एआरआईएएमए मॉडल के विशेष मामले के रूप में लागू किया जा सकता है, विशेष रूप से, एआरआईएआईए 1,1,2 मॉडल। विश्वास के अंतराल की गणना करना संभव है डीआरडीएम दीर्घकालीन पूर्वानुमानों को एआरआईएए मॉडल के विशेष मामलों के रूप में देखते हुए, उन पर विचार करके, एआरआईएए मॉडल के विशेष मामलों पर विचार करके, सभी सॉफ़्टवेयर इन मॉडल के लिए आत्मविश्वास अंतराल की गणना नहीं करते हैं, विश्वास के अंतराल की चौड़ाई मैं मॉडल के आरएमएस त्रुटि पर निर्भर करता हूं, ii प्रकार सरल या रैखिक चौरसाई के चौरसाई स्थिरांक के मूल्य एस और iv आप की भविष्यवाणी कर रहे हैं आगे की अवधि की संख्या सामान्य रूप में, अंतराल एसईएस मॉडल में बड़ा हो जाता है के रूप में तेजी से फैल गया और वे बहुत तेजी से फैल गया जब रैखिक बजाय सरल चौरसाई का इस्तेमाल किया जाता है इस विषय पर नोट्स के एआरआईएए मॉडल खंड में और अधिक चर्चा की जाती है पृष्ठ के शीर्ष पर लौटें। लोढ़ी का एक मजबूत संस्करण जो प्रतिगमन में आउटलेयर को कम वजन प्रदान करता है विधि छह मतलब पूर्ण विचलन के बाहर डेटा के लिए शून्य वजन प्रदान करती है। चिकनाई, अवधि, विधि अवधि के लिए अवधि की अवधि निर्धारित करता है लूस और नीच तरीके के लिए, अवधि डेटा अंकों की कुल संख्या का प्रतिशत, कम या बराबर है 1 से चलती औसत और सेविट्की-गोले के तरीकों के लिए, अवधि भी अजीब होनी चाहिए, एक भी अवधि स्वचालित रूप से 1 से कम हो जाती है। स्लिम y, सिगोले, डिग्री Savitzky-Golay विधि का उपयोग डिग्री के द्वारा निर्दिष्ट बहुपद डिग्री के साथ। , सिगोले, डिग्री Savitzky-Golay गणना अवधि में स्पैन द्वारा निर्दिष्ट डेटा बिंदुओं की संख्या का उपयोग अजीब होना चाहिए और डिग्री span. yy चिकनी x से कम होना चाहिए, y अतिरिक्त रूप से एक्स डेटा निर्दिष्ट करता है यदि एक्स प्रदान नहीं किया गया है, तो तरीकों की आवश्यकता है x डेटा एक्स 1 लंबाई y मान लेना चाहिए आपको एक्स डेटा निर्दिष्ट करना चाहिए जब यह समान रूप से नहीं है या सॉर्ट नहीं किया जाता है यदि एक्स एकसमान नहीं है और आप निर्दिष्ट विधि निर्दिष्ट नहीं करते हैं, अगर चौरसाई विधि को एक्स को क्रमबद्ध करने की आवश्यकता है, तो सॉर्टिंग स्वतः होता है gpuarrayYY चिकनी gpuarrayY एक GPU पर ऑपरेशन करता है इनपुट gpuarrayY एक gpuArray कॉलम वेक्टर है आउटपुट gpuarrayYY एक gpuArray कॉलम वेक्टर है इस वाक्यविन्यास को समानांतर कंप्यूटिंग टूलबॉक्स की आवश्यकता है। नोट आप चिकनी फ़ंक्शन के साथ gpuArray x और y इनपुट का उपयोग कर सकते हैं, लेकिन यह केवल डिफ़ॉल्ट पद्धति के साथ अनुशंसा की जाती है, अन्य तरीकों से GPU डेटा का उपयोग करना किसी भी प्रदर्शन के लाभ की पेशकश नहीं करता है। अपने देश का चयन करें। औसत औसत फ़िल्टर एमए फ़िल्टर। लोड हो रहा है औसत स्थान पर चलने वाला एक साधारण लो पास एफआईआर कमांड इंपल्स रिस्पांस फ़िल्टर सामान्यतः के लिए उपयोग किया जाता है नमूनाकृत डेटा संकेत की एक सरणी को चौरसाई करना यह एक समय में इनपुट के एम नमूनों को लेता है और उन एम-नमूनों का औसत लेता है और एक आउटपुट पॉइंट का उत्पादन करता है यह एक बहुत ही सरल एलपीएफ लो पास फ़िल्टर संरचना है जो वैज्ञानिकों और इंजीनियरों को फ़िल्टर करने के लिए आसान बनाता है इच्छित डेटा से अवांछित शोर घटक। फिल्टर की लंबाई बढ़ जाती है, पैरामीटर एम उत्पादन बढ़ने की चिकनाई बढ़ जाती है, जबकि डेटा में तेज बदलाव तेजी से कुंद कर रहे हैं इसका मतलब यह है कि इस फिल्टर में उत्कृष्ट समय डोमेन प्रतिक्रिया है लेकिन एक खराब आवृत्ति प्रतिक्रिया है। एमए फ़िल्टर तीन महत्वपूर्ण कार्य करता है .1 यह एम इनपुट पॉइंट लेता है, उन एम पॉइंट के औसत की गणना करता है और एक आउटपुट पॉइंट 2 का उत्पादन करता है अभिकलन गणनाओं के कारण इसमें फिल्टर की निश्चित मात्रा में देरी होती है 3 फ़िल्टर कम आवृत्ति वाले डोमेन प्रतिक्रिया के साथ काम करता है और एक अच्छा समय डोमेन प्रतिक्रिया देता है.मैटलैब कोड। Matlab कोड के बाद एक एम - बिंदु औसत फिल्टर चल रहा है और विभिन्न फिल्टर लंबाई के लिए आवृत्ति प्रतिक्रिया भी भूखंडों। समय डोमेन प्रतिक्रिया। एमए filter.3-point एमए फ़िल्टर आउटपुट के लिए इनपुट। औसत फिल्टर चलने के लिए इनपुट। 3 बिंदु की प्रतिक्रिया औसत फिल्टर चलती .51-बिंदु एमए फिल्टर आउटपुट .101-बिंदु एमए फ़िल्टर आउटपुट। 51-पॉइंट औसत फिल्टर चल रहा है। रिस्पॉन्स 101-पॉइंट औसत फिल्टर चल रहा है। 501 पॉइंट एमए फिल्टर आउटपुट। 501 पॉइंट के रिस्पॉन्स औसत फिल्टर चल रहा है। पहली साजिश पर, हम हैं इनपुट जो चलती औसत फिल्टर में जा रहा है इनपुट शोर है और हमारा उद्देश्य शोर को कम करना है अगला चित्र 3-बिंदु मूविंग औसत फ़िल्टर का आउटपुट प्रतिक्रिया है यह आंकड़ा से अनुमान लगाया जा सकता है कि 3-पॉइंट मूविंग औसत फ़िल्टर ने शोर को फ़िल्टर करने में बहुत कुछ नहीं किया है हम फिल्टर नल को 51-अंक तक बढ़ाते हैं और हम देख सकते हैं कि आउटपुट में शोर बहुत कम हो गया है, जिसे अगले आकृति में दर्शाया गया है। विभिन्न लंबाई के औसत फिल्टर को आगे बढ़ाने का फ़्रीक्वेंसी रिस्पांस हम नल को आगे बढ़कर 101 और 501 तक बढ़ा सकते हैं और हम यह देख सकते हैं कि शोर लगभग शून्य है, फिर भी संक्रमण को स्पष्ट रूप से सिग्नल के दोनों तरफ ढलान का निरीक्षण किया जाता है और इन्हें आदर्श ईंट दीवार संक्रमण के साथ तुलना करते हैं। हमारे इनपुट। फ्रीक्वेंसी रिस्पांस। आवृत्ति प्रतिक्रिया से यह कहा जा सकता है कि रोल-ऑफ बहुत धीमा है और स्टॉप बैंड क्षीणन अच्छा नहीं है इस स्टॉप बैंड क्षीणन को देखते हुए स्पष्ट रूप से, चलती औसत फिल्टर दूसरे से आवृत्तियों के एक बैंड को अलग नहीं कर सकता जैसा कि हम जानते हैं कि समय के क्षेत्र में अच्छा प्रदर्शन आवृत्ति डोमेन में खराब प्रदर्शन में होता है, और इसके विपरीत, चलती औसत एक असाधारण अच्छा चौरसाई फ़िल्टर होता है जो कि समय में क्रिया करता है मुख्य, लेकिन एक असाधारण बुरा कम-पास फ़िल्टर आवृत्ति डोमेन में कार्रवाई. बाकी लिंक। अनुशंसित पुस्तकें। प्राथमिक साइडबार
No comments:
Post a Comment